If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15m^2+16m-48=0
a = 15; b = 16; c = -48;
Δ = b2-4ac
Δ = 162-4·15·(-48)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-56}{2*15}=\frac{-72}{30} =-2+2/5 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+56}{2*15}=\frac{40}{30} =1+1/3 $
| 37=6x | | G(x)=-6x+11 | | (x-3)^4=64 | | 6a-1=43 | | -4g+7=-13 | | 6x+9=8+2x | | 0,89+48k=56k+0,31+16k | | x=39+Y | | n=0.35 | | 14=12+3x | | x-4/2/3=1/3 | | 5+3x+x=44 | | 10=15s-58. | | -6x+2=-11x-13 | | -11-1+5x=x | | -1+0.5x+9.7=12.7 | | 23x-5=64 | | 4x-10+42=180 | | 6h^2-12h-504=0 | | 5x-40=2x-4 | | −6+r2−r=0 | | -1x-10=8 | | 8(y+2)=10(y+16 | | -35x+8.5x-4=26 | | 5x+20+3x+10=180 | | 49x+15=407 | | x+x+31+x*4=139 | | 10x-3=0.5x-18 | | 27-6x=x-2 | | x^2-21x+98=) | | 4x×5=65 | | (5-7)/x=24 |